
Getting By With Just psql

PgConf EU - Warsaw
October 2017
Corey Huinker

Why Use Only psql?
● Restricted Toolchain

○ Training/Maintenance Considerations
○ Regulatory or Auditing Restrictions
○ Security Concerns
○ Container Limitations
○ Installation Hassles

● Obfuscation
○ Application language may only add clutter to code
○ Database access layer may add more heat than light (positional rather than named

placeholders, etc)
● Logging for Auditing

○ modes to show the query that was run with all of the positional variables filled out
○ success/failure and row counts printed by default
○ timings are printed (in milliseconds but also in human readable times in v10)

● Features available in newer versions of psql will work when connected to earlier server versions
and postgres-ish databases (Vertica, Redshift).

\ ("slash") commands
● Are psql commands
● Are never sent by psql to the server
● Have no meaning to postgres itself
● Have no meaning in other programming languages, unless that language is copying psql
● All operations of psql can be done with \ commands

○ connecting to a database
○ changing format output
○ sending SQL commands to a server
○ changing output location

● Anything that is not a slash command or a buffer terminator (';') is accumulated in a buffer to be
sent to the server at a later time

● Many operations can be done with command-line switches as well to set initial state

Variables
● Available in all supported postgresql versions
● Set on the command line via -v or --set or the \-comands \set and \gset
● Are string type
● Can be used as a simple macro replacement (:var), a quote-safe string literal (:'var') or a

quote-safe SQL identifier (:"var), to avoid SQL-injection risks.

$ psql test --quiet --set message="The farmer's cow says \"Moo\""
test=# \echo :message
The farmer's cow says "Moo"
test=# \echo :'message'
'The farmer''s cow says "Moo"'
test=# \echo :"message"
"The farmer's cow says ""Moo"""

● Undefined variables are not macro-expanded in any way

$ psql test --quiet
test=# \echo :some_var :'some_var' :"some_var"
:some_var :'some_var' :"some_var"

Setting Variables - \set
● Available in all supported versions
● Can invoke OS-level commands and environment variables

test=# \set yes_please `yes | head -n 1`
test=# \echo :yes_please
Y
test=# \set path `echo $PATH | cut -d ':' -f 1`
test=# \echo :path
/home/corey/bin

● Does concatenation without spaces

test=# \set xvar x
test=# \set yvar y
test=# \set alphabet :xvar :yvar z
test=# \echo :alphabet
xyz

Using Variables - Sanitizing Input
$ psql test --set os_user=$(whoami)
test=# CREATE TEMPORARY TABLE user_log (username text);
CREATE TABLE
test=# INSERT INTO user_log(username) VALUES(:'os_user');
INSERT 0 1
test=# SELECT * FROM user_log;
 username

 corey
(1 row)

test=# SELECT count(*) FROM user_log WHERE username = :'os_user';
 count

 1
(1 row)

Using Variables - SQL Construction
test=# \set temp_tab_name user_log_partition_ :os_user
test=# CREATE TEMPORARY TABLE :"temp_tab_name" AS

SELECT * FROM user_log WHERE username = :'os_user';
SELECT 1
test=# \d user_log_partition_corey
Table "pg_temp_2.user_log_partition_corey"
 Column | Type | Modifiers
----------+------+-----------
 username | text |

Use un-sanitized variables
in SQL with extreme
caution!

https://xkcd.com/327/

Setting Variables - \gset
● New in 9.3 (thanks, Pavel!)
● Captures columns of a one-row result set

test=# select 'a' as avar \gset
test=# \echo :avar
a

● Multi-row results sets are a psql error and will set no values (not a DB-error)

test=# select 'b' as avar from generate_series(1,10) \gset
more than one row returned for \gset
test=# \echo :avar
a

● Variable names can be prefixed

test=# select 'a' as avar \gset prefix_
test=# \echo :prefix_avar
a

Setting Variables - \gset
● Beware of name clashes, last (rightmost) column wins

test=# select 'a' as avar, 'b' as avar \gset prefix_
test=# \echo :prefix_avar
b

● NULL results un-set the variable, which is different from \set
● \set doesn't know about NULL, thinks it's the string 'NULL'

test=# \set avar a
test=# \echo :avar
a
test=# SELECT NULL as avar \gset
test=# \echo :avar
:avar
test=# \set avar NULL
test=# \echo :avar
NULL

Ugly Hack: Defaults for Variables
test=# \set foo abc
test=# \set test_foo :foo
test=# SELECT CASE
test-# WHEN :'test_foo' = ':foo' THEN 'default_value'
test-# ELSE :'test_foo'
test-# END AS foo
test-# \gset
test=# \echo :foo
abc
test=# \unset foo
test=# \set test_foo :foo
test=# SELECT CASE
test-# WHEN :'test_foo' = ':foo' THEN 'default_value'
test-# ELSE :'test_foo'
test-# END AS foo
test-# \gset
test=# \echo :foo
default_value

Same SELECT statement

Data Structures: Temporary Tables
● Allows for actual data types whereas psql variables are only ever strings
● can do validation with queries and applied check constraints
● can import data through INSERT statements and \copy statements
● can capture data from complex commands via \copy and FROM PROGRAM

test=# CREATE TEMPORARY TABLE etc_pwd (uname text, pwd text, uid integer, gid integer,
fullname text, homedir text, shell text);
CREATE TABLE
test=# \copy etc_pwd FROM PROGRAM 'head -n 4 /etc/passwd' (DELIMITER ':')
COPY 4
test=# select * from etc_pwd;
 uname | pwd | uid | gid | fullname | homedir | shell
--------+-----+-----+-----+----------+-----------+-------------------
 root | x | 0 | 0 | root | /root | /bin/bash
 daemon | x | 1 | 1 | daemon | /usr/sbin | /usr/sbin/nologin
 bin | x | 2 | 2 | bin | /bin | /usr/sbin/nologin
 sys | x | 3 | 3 | sys | /dev | /usr/sbin/nologin
(4 rows)

Pushing Data
● COPY TO PROGRAM launches program on server - which might not have the program
● \COPY ... TO PROGRAM uses local client environment
● Allows you to maintain control within psql rather than terminating and passing control back to bash

test=# \copy (SELECT * FROM etc_pwd) TO PROGRAM
 'gzip | s3_archive.sh s3://mybucket/pwd_log.gz'
COPY 4
uploaded to s3://mybucket/pwd_log.gz

Pushing Data Alternative: \g
● sends output to a file (\g filename.txt)
● or a program (\g | program.sh)
● will attempt default psql formatting unless you set it otherwise
● useful when the "postgres" database isn't actually "postgres" (vertica, redshift, etc)

test=# \pset format unaligned
Output format is unaligned.
test=# \pset border 0
Border style is 0.
test=# \pset fieldsep '\t'
Field separator is " ".
test=# SELECT * FROM etc_pwd \g | gzip > output.txt.gz
test=# \! zcat output.txt.gz
uname pwd uid gid fullname homedir shell
root x 0 0 root /root /bin/bash
daemon x 1 1 daemon /usr/sbin /usr/sbin/nologin
bin x 2 2 bin /bin /usr/sbin/nologin
sys x 3 3 sys /dev /usr/sbin/nologin
(4 rows)

Metaprogramming: \gexec
● New in 9.6
● Interprets all non-null results in a result set to themselves be SQL statements to

be immediately sent to the server for execution in order of arrival (top row first,
left to right within a row

● Statements generated can be DML or DDL
● Must be SQL, not psql \-commands
● Normal Error Stop variables are in effect
● No minimum number of rows returned
● Can be used as a primitive finite loop construct
● Whole result set is generated before any result queries are executed

Metaprogramming: \gexec
test=# CREATE TEMPORARY TABLE t (a integer, b integer, c integer);
CREATE TABLE
test=# SELECT format('CREATE INDEX ON t(%I)', attname)
test-# FROM pg_attribute
test-# WHERE attnum > 0
test-# AND attrelid = 't'::regclass
test-# \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
test=# \d+ t
 Table "pg_temp_3.t"
 Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+---------+-----------+----------+---------+---------+--------------+-------------
 a | integer | | | | plain | |
 b | integer | | | | plain | |
 c | integer | | | | plain | |
Indexes:
 "t_a_idx" btree (a)
 "t_b_idx" btree (b)
 "t_c_idx" btree (c)

\gexec: Rebuild Indexes
test=# SELECT 'BEGIN'
test-# UNION ALL
test-# SELECT format('DROP INDEX %s', indexrelid::regclass::text)
test-# FROM pg_index
test-# WHERE indrelid = 't'::regclass
test-# UNION ALL
test-# SELECT 'INSERT INTO t SELECT a.a, a.a % 10, a.a % 100 FROM generate_series(1,1000000) as a(a)'
test-# UNION ALL
test-# SELECT pg_get_indexdef(indexrelid)
test-# FROM pg_index
test-# WHERE indrelid = 't'::regclass
test-# UNION ALL
test-# SELECT 'COMMIT'
test-# \gexec
BEGIN
DROP INDEX
DROP INDEX
DROP INDEX
INSERT 0 1000000
CREATE INDEX
CREATE INDEX
CREATE INDEX
COMMIT

\gexec: Avoid Losing Indexes on Fail
test=# BEGIN;
BEGIN
test=# SELECT format('DROP INDEX %s', indexrelid::regclass::text) FROM pg_index
test-# WHERE indrelid = 't'::regclass UNION ALL
test-# SELECT 'SELECT 1 / 0' UNION ALL
test-# SELECT pg_get_indexdef(indexrelid) FROM pg_index
test-# WHERE indrelid = 't'::regclass \gexec
DROP INDEX
DROP INDEX
DROP INDEX
ERROR: division by zero
ERROR: current transaction is aborted, commands ignored until end of transaction block
ERROR: current transaction is aborted, commands ignored until end of transaction block
ERROR: current transaction is aborted, commands ignored until end of transaction block
test=# COMMIT;
ROLLBACK
test=# \d t
 Table "pg_temp_3.t"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 a | integer | | |
 b | integer | | |
 c | integer | | |
Indexes:
 "t_a_idx" btree (a)
 "t_b_idx" btree (b)
 "t_c_idx" btree (c)

Swap the INSERT statement
for a statement guaranteed to
fail

Conditionals: Prior to Version 10
● It was do-able...sort of:

test=# CREATE TEMPORARY TABLE my_table AS SELECT 1 as x;
SELECT 1
test=#
test=# SELECT CASE
test-# WHEN EXISTS(SELECT NULL FROM my_table)
test-# THEN '\echo not empty \q'
test-# ELSE 'DROP TABLE my_table;'
test-# END AS cmd
test-# \gset
test=# :cmd
not empty

● Not clear
● Not very expressive
● Very hard to do multiple statements
● Probably impossible to do nested conditionals
● These sorts of very minor branching issues often forced programmers to use an application language

Conditionals: New in Version 10
● \if, \elif, \else, \endif
● \if and \elif take one token and evaluate it for psql-boolean truth

true, false, 1, 0, on, off, yes, no
...or any unambiguous case insensitive leading substrings of one of those

test=# \if tR \echo good enough \endif
good enough

● Any other values raise a warning and are treated as false

test=# \if 42 \echo good enough \endif
unrecognized value "42" for "\if expression": Boolean expected
\echo command ignored; use \endif or Ctrl-C to exit current \if block
test=#

● Cannot (yet) do more complex expression evaluation

Queries with \gset: Decider Of Truth!
test=# SELECT EXISTS (SELECT NULL FROM pg_class
 WHERE relname = 'my_table') as my_table_exists
test-# \gset
test=# \if :my_table_exists
test@# drop table my_table;
query ignored; use \endif or Ctrl-C to exit current \if block
test-# \endif

Pros:
● Full expressiveness of SQL in determining complex truth
● Much of what you wanted to know is in the database anyway

Cons:
● Database roundtrip
● Clutters logs with trivial math equations (example: SELECT 3 > 4)
● psql might not be connected to a database at the moment

Modularity With Includes - Module
$ cat move_to_archive.sql
-- requires variable "table_name" to be defined
BEGIN;
-- sanitize table_name and ensure existence of destination table
SELECT :'table_name'::regclass::text as src_table_name,
 format('%s', :'table_name' || '_archive')::regclass::text as dest_table_name,
 CURRENT_TIMESTAMP - INTERVAL '7 days' as low_water_mark
\gset
WITH del as (
 DELETE FROM :src_table_name
 WHERE created < :'low_water_mark'::timestamptz
 RETURNING *)
INSERT
INTO :dest_table_name
SELECT *
FROM del;
COMMIT;

Modularity With Includes - Usage
test=# CREATE TEMPORARY TABLE yep (x integer, created timestamptz default
current_timestamp);
CREATE TABLE
test=# INSERT INTO yep(x) SELECT r.r FROM generate_series(1,10000) as r(r);
INSERT 0 10000
test=# CREATE TEMPORARY TABLE yep_archive AS SELECT * FROM yep WHERE false;
SELECT 0
test=# \ir move_to_archive.sql

● Sub-script handles un-set variables in a non-destructive way

BEGIN
psql:move_to_archive.sql:12: ERROR: syntax error at or near ":"
LINE 1: SELECT :'table_name'::regclass::text as src_table_name,
 ^
psql:move_to_archive.sql:22: ERROR: syntax error at or near ":"
LINE 2: DELETE FROM :src_table_name
 ^
ROLLBACK

Modularity With Includes - Usage
● When used correctly, it just works.

test=# \set table_name yep
test=# \ir move_to_archive.sql
BEGIN
INSERT 0 0
COMMIT

● But even when called correctly, only does work that makes sense.

test=# CREATE TEMPORARY TABLE nope AS SELECT * FROM yep;
SELECT 10000
test=# \set table_name nope
test=# \ir move_to_archive.sql
BEGIN
psql:move_to_archive.sql:12: ERROR: relation "nope_archive" does not exist
psql:move_to_archive.sql:22: ERROR: current transaction is aborted, commands ignored
until end of transaction block
ROLLBACK

Modularity With Includes
Pros:

● Can do transactions whereas a DO block cannot

Cons:
● Cannot nest transactions. All transaction code must either be in every included module or entirely in the calling

program.
● Where do you put the GRANT statements?
● Keeping code generic enough to be useful multiple schemas, multiple databases.
● Underlying OS requirements (i.e. is that extension installed) are out of psql's control.

Looping
A hard problem

● psql interprets commands "on the fly", if there was a looping construct it would have to remember where the loop
started.

● Would have to ensure proper nesting of if/then/else blocks within loop constructs
● Difficult to communicate to an interactive user where they are inside loops and blocks
● Code that was part of the loop construct on one iteration might not on the next:

\set x 1
\set continue_loop true
\set weird_command '\endwhile'
\while :continue_loop
SELECT :x + 1 as x, (:x > 1) as include_file \gset
\if :include_file
 \ir some_other_file.sql
 :weird_command
\endif
\endwhile

Looping With Recursion
$ cat recursion_test.sql
\echo :x
SELECT :x + 1 as x, (:x > :y) as exit_now \gset
\if :exit_now
 \q
\endif
\ir recursion_test.sql

$ psql test -f recursion_test.sql --set x=1 --set y=2000
...
1017
1018
1019
psql:recursion_test.sql:6: recursion_test.sql: Too many open files

● You can raise the file limit, but in my test I got a segfault at 5291

Future Directions:
● Real expressions for \if, \elif, \set
● \gdesc
● Testing for variable definition with {?var}
● Test-able server version numbers (good for install scripts)
● Making the postgres regression tests more robust without switching to PgTAP

Questions?

