Getting By With Just psql

PgConf EU - Warsaw
October 2017
Corey Huinker

Why Use Only psql?

e Restricted Toolchain
Training/Maintenance Considerations
Regulatory or Auditing Restrictions

o Security Concerns

o Container Limitations

o Installation Hassles
e Obfuscation
O
O

O O

Application language may only add clutter to code
Database access layer may add more heat than light (positional rather than named
placeholders, etc)
e Logging for Auditing
o modes to show the query that was run with all of the positional variables filled out
o success/failure and row counts printed by default
o timings are printed (in milliseconds but also in human readable times in v10)
e Features available in newer versions of psql will work when connected to earlier server versions
and postgres-ish databases (Vertica, Redshift).

\ ("slash") commands

Are psql commands
Are never sent by psql to the server
Have no meaning to postgres itself
Have no meaning in other programming languages, unless that language is copying psql
All operations of psqgl can be done with \ commands
o connecting to a database
o changing format output
o sending SQL commands to a server
o changing output location
e Anything that is not a slash command or a buffer terminator (';') is accumulated in a buffer to be
sent to the server at a later time
e Many operations can be done with command-line switches as well to set initial state

Variables

Available in all supported postgresql versions

Set on the command line via -v or --set or the \-comands \set and \gset

Are string type

Can be used as a simple macro replacement (:var), a quote-safe string literal (:'var') or a
quote-safe SQL identifier (:"var), to avoid SQL-injection risks.

$ psgl test —--quiet --set message="The farmer's cow says \"Moo\""
test=# \echo :message

The farmer's cow says "Moo"

test=# \echo :'message'

'The farmer''s cow says "Moo"'

test=# \echo :"message"

"The farmer's cow says ""Moo"""

e Undefined variables are not macro-expanded in any way

$ psgl test --quiet
test=# \echo :some var :'some var' :"some var"
:some var :'some var' :"some var"

Setting Variables - \set

e Available in all supported versions
e Can invoke OS-level commands and environment variables

test=# \set yes please 'yes | head -n 1°

test=# \echo :yes please

Y

test=# \set path ‘echo $PATH | cut -d ':' -f 1°
test=# \echo :path

/home/corey/bin

e Does concatenation without spaces

test=# \set xvar x

test=# \set yvar y

test=# \set alphabet :xvar :yvar z
test=# \echo :alphabet

XYZ

Using Variables - Sanitizing Input

$ psgl test --set os user=$(whoami)
test=# CREATE TEMPORARY TABLE user log (username text);
CREATE TABLE
test=# INSERT INTO user log(username) VALUES(:'os user');
INSERT 0 1
test=# SELECT * FROM user_ log;

username

corey

(1 row)

test=# SELECT count (*) FROM user log WHERE username = :'os user';
count

Using Variables - SQL Construction

test=# \set temp tab name user log partition_ :os user
test=# CREATE TEMPORARY TABLE :"temp tab name" AS
SELECT * FROM user log WHERE username = :'os user';
SELECT 1
test=# \d user log partition corey)
Table "pg temp 2.user log partition corey" caution!
Column | Type | Modifiers
__________ _|________|____________
username [Eext 1 Ty THIS 15 OH, DEAR = DID HE | DID YoU REALLY
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON
WERE HAVING SOME N Fl ‘I.:J’HY Robert'); DROP
CU{*LPUTEE TROUBLE. TABLE Students;-~ 7
% ~ OH.YES LTIE
BOBBY TABLES,
" ! ﬂ Z ﬂ ‘ WE CALL HIM.
https://xkcd.com/327/

Use un-sanitized variables
in SQL with extreme

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
: TOSANMZE YOUR
DATABASE INPUTS.

Setting Variables - \gset

e New in 9.3 (thanks, Pavel!)
e Captures columns of a one-row result set

test=# select 'a' as avar \gset
test=# \echo :avar
a

e Multi-row results sets are a psql/ error and will set no values (not a DB-error)

test=# select 'b' as avar from generate series(1l,10) \gset
more than one row returned for \gset

test=# \echo :avar

a

e Variable names can be prefixed

test=# select 'a' as avar \gset prefix
test=# \echo :prefix avar
a

Setting Variables - \gset

e Beware of name clashes, last (rightmost) column wins

test=# select 'a' as avar, 'b' as avar \gset prefix
test=# \echo :prefix avar
b

e NULL results un-set the variable, which is different from \set
e \set doesn't know about NULL, thinks it's the string 'NULL'

test=# \set avar a

test=# \echo :avar

a

test=# SELECT NULL as avar \gset
test=# \echo :avar

ravar

test=# \set avar NULL

test=# \echo :avar

NULL

Ugly Hack: Defaults for Variables

test=# \set foo abc
test=# \set test foo :foo

test=# SELECT CASE

test-# WHEN :'test foo' = ':foo' THEN 'default value' <i:::\
test-# ELSE :'test foo'

test-# END AS foo

test-# \gset

;Eztz# \echo :foo Same SELECT statement
test=# \unset foo

test=# \set test foo :foo

test=# SELECT CASE

test-# WHEN :'test foo' = ':foo' THEN 'default value' <t:i/
test-# ELSE :'test foo'

test-# END AS foo

test-# \gset
test=# \echo :foo
default value

Data Structures: Temporary Tables

Allows for actual data types whereas psql variables are only ever strings
can do validation with queries and applied check constraints

can import data through INSERT statements and \copy statements

can capture data from complex commands via \copy and FROM PROGRAM

test=# CREATE TEMPORARY TABLE etc pwd (uname text, pwd text, uid integer, gid integer,
fullname text, homedir text, shell text);

CREATE TABLE

test=# \copy etc pwd FROM PROGRAM 'head -n 4 /etc/passwd' (DELIMITER ':'")

COPY 4

test=# select * from etc pwd;

uname | pwd | uid | gid | fullname | homedir | shell
———————— s e e s it e L e P
root | x | 0 | 0 | root | /root | /bin/bash

daemon | x | 1] 1 | daemon | /usr/sbin | /usr/sbin/nologin
bin | x | 2 2 | bin | /bin | /usr/sbin/nologin
SYS | x | 3 3 | sys | /dev | /usr/sbin/nologin

Pushing Data

e COPY TO PROGRAM launches program on server - which might not have the program

e \COPY ... TO PROGRAM uses local client environment

e Allows you to maintain control within psql rather than terminating and passing control back to bash

test=# \copy (SELECT * FROM etc pwd) TO PROGRAM
'gzip | s3_archive.sh s3://mybucket/pwd log.gz'

COPY 4
uploaded to s3://mybucket/pwd log.gz

Pushing Data Alternative: \g

sends output to a file (\g filename.txt)

or a program (\g | program.sh)

will attempt default psqgl formatting unless you set it otherwise

useful when the "postgres" database isn't actually "postgres" (vertica, redshift, etc)

test=# \pset format unaligned

Output format is unaligned.

test=# \pset border O

Border style is 0.

test=# \pset fieldsep '\t'

Field separator is " "

test=# SELECT * FROM etc pwd \g | gzip > output.txt.gz
test=# \! zcat output.txt.gz

uname pwd uid gid fullname homedir shell

root x 0 0 root /root /bin/bash

daemon X 1 1 daemon /usr/sbin /usr/sbin/nologin
bin x 2 2 bin /bin /usr/sbin/nologin

sys X 3 3 sys /dev /usr/sbin/nologin

(4 rows)

Metaprogramming: \gexec

e New in 9.6

] Interprets all non-null results in a result set to themselves be SQL statements to
be immediately sent to the server for execution in order of arrival (top row first,
left to right within a row

Statements generated can be DML or DDL

Must be SQL, not psgl \-commands

Normal Error Stop variables are in effect

No minimum number of rows returned

Can be used as a primitive finite loop construct

Whole result set is generated before any result queries are executed

Metaprogramming: \gexec

test=# CREATE TEMPORARY TABLE t (a integer, b integer, c integer);
CREATE TABLE
test=# SELECT format ('CREATE INDEX ON t(%I)', attname)
test-# FROM pg attribute
test-# WHERE attnum > 0
test-# AND attrelid = 't'::regclass
test-# \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
test=# \d+ t
Table "pg temp 3.t"

Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
———————— o e
a | integer | | | | plain |

b | integer | | | | plain |

c | integer | | | | plain |

Indexes:

"t a idx" btree (a)
"t b idx" btree (b)
"t c idx" btree (c)

\gexec: Rebuild Indexes

test=# SELECT 'BEGIN'

test-# UNION ALL

test-# SELECT format ('DROP INDEX %s', indexrelid::regclass::text)
test-# FROM pg index

test-# WHERE indrelid = 't'::regclass
test-# UNION ALL

test-# SELECT 'INSERT INTO t SELECT a.a, a.a % 10, a.a % 100 FROM generate series(1,1000000) as af(a)'
test-# UNION ALL

test-# SELECT pg get indexdef (indexrelid)
test-# FROM pg index

test-# WHERE indrelid = 't'::regclass
test-# UNION ALL

test-# SELECT 'COMMIT'

test-# \gexec

BEGIN

DROP INDEX

DROP INDEX

DROP INDEX

INSERT O 1000000

CREATE INDEX

CREATE INDEX

CREATE INDEX

COMMIT

\gexec: Avoid Losing Indexes on Fai

dexrelid::regclass::text) FROM pg index

FROM
gexec

pg_index

ommands ignored until end of transaction block
ommands ignored until end of transaction block
ommands ignored until end of transaction block

test=# BEGIN;
BEGIN

test=# SELECT format ('DROP INDEX %s', in
test-# WHERE indrelid = 't'::regclass UNION ALL
test-# SELECT 'SELECT 1 / 0' UNION ALL
test-# SELECT pg get indexdef (indexrelid)
test-# WHERE indrelid = 't'::regclass \
DROP INDEX

DROP INDEX

DROP INDEX
ERROR: division by zero
ERROR: current transaction is aborted, c
ERROR: current transaction is aborted, c
ERROR: current transaction is aborted, c
test=# COMMIT;

ROLLBACK

test=# \d t

Table "pg temp 3.t"

Column | Type | Collation | Nullable
———————— o
a | integer |

b | integer |

c | integer |

Indexes:

"t a idx" btree (a)
"t b idx" btree (b)
"t ¢ idx" btree (c)

Swap the INSERT statement
for a statement guaranteed to
fail

Conditionals: Prior to Version 10

e |t was do-able...sort of:
test=# CREATE TEMPORARY TABLE my table AS SELECT 1 as x;
SELECT 1
test=#
test=# SELECT CASE
test-# WHEN EXISTS (SELECT NULL FROM my table)
test-# THEN '\echo not empty \q'
test-# ELSE 'DROP TABLE my table;'
test-# END AS cmd
test-# \gset
test=# :cmd
not empty
e Notclear
e Not very expressive
e Very hard to do multiple statements
e Probably impossible to do nested conditionals
e These sorts of very minor branching issues often forced programmers to use an application language

Conditionals: New in Version 10

e \if, \elif, \else, \endif

e \if and \elif take one token and evaluate it for psql-boolean truth
true, false, 1, 0, on, off, yes, no
...or any unambiguous case insensitive leading substrings of one of those

test=# \if tR \echo good enough \endif
good enough
® Any other values raise a warning and are treated as false
test=# \if 42 \echo good enough \endif
unrecognized value "42" for "\if expression": Boolean expected
\echo command ignored; use \endif or Ctrl-C to exit current \if block

test=#

° Cannot (yet) do more complex expression evaluation

Queries with \gset: Decider Of Truth!

test=# SELECT EXISTS (SELECT NULL FROM pg _class
WHERE relname = 'my table') as my table exists
test-# \gset
test=# \1f :my table exists
test@# drop table my table;
query ignored; use \endif or Ctrl-C to exit current \if block
test-# \endif

Pros:
e Full expressiveness of SQL in determining complex truth
e Much of what you wanted to know is in the database anyway
Cons:
e Database roundtrip
e Clutters logs with trivial math equations (example: SELECT 3 > 4)
e psqgl might not be connected to a database at the moment

Modularity With Includes - Module

$ cat move to archive.sql
-— requires variable "table name" to be defined

BEGIN;

—-- sanitize table name and ensure existence of destination table

SELECT :'table name'::regclass::text as src table name,
format ('%s', :'table name' || ' archive')::regclass::text as dest table name,
CURRENT TIMESTAMP - INTERVAL '7 days' as low water mark

\gset

WITH del as (
DELETE FROM :src table name

WHERE created < :'low water mark'::timestamptz
RETURNING *)

INSERT

INTO :dest table name

SELECT *

FROM del;

COMMIT;

Modularity With Includes - Usage

test=# CREATE TEMPORARY TABLE yep (x integer, created timestamptz default
current timestamp) ;

CREATE TABLE

test=# INSERT INTO yep(x) SELECT r.r FROM generate series(1,10000) as r(r);
INSERT 0 10000

test=# CREATE TEMPORARY TABLE yep archive AS SELECT * FROM yep WHERE false;
SELECT O

test=# \ir move to archive.sql

e Sub-script handles un-set variables in a non-destructive way

BEGIN

psgl:move to archive.sgl:12: ERROR: syntax error at or near ":"
LINE 1: SELECT :'table name'::regclass::text as src table name,
psgl:move to archive.sgl:22: ERROR: syntax error at or near ":"
LINE 2: DELETE FROM :src table name

A

ROLLBACK

Modularity With Includes - Usage

® TWhen used correctly, it Jjust works.

test=# \set table name yep
test=# \ir move to archive.sql
BEGIN

INSERT 0 O

COMMIT

° But even when called correctly, only does work that makes sense.

test=# CREATE TEMPORARY TABLE nope AS SELECT * FROM yep;

SELECT 10000

test=# \set table name nope

test=# \ir move to archive.sql

BEGIN

psgl:move to archive.sgl:12: ERROR: relation "nope archive" does not exist
psgl:move to archive.sgl:22: ERROR: current transaction is aborted, commands ignored
until end of transaction block

ROLLBACK

Modularity With Includes

Pros:
e Can do transactions whereas a DO block cannot

Cons:
e Cannot nest transactions. All transaction code must either be in every included module or entirely in the calling
program.
e Where do you put the GRANT statements?
Keeping code generic enough to be useful multiple schemas, multiple databases.
e Underlying OS requirements (i.e. is that extension installed) are out of psql's control.

Looping

A hard problem

e psql interprets commands "on the fly", if there was a looping construct it would have to remember where the loop
started.

e Would have to ensure proper nesting of if/then/else blocks within loop constructs

Difficult to communicate to an interactive user where they are inside loops and blocks

e Code that was part of the loop construct on one iteration might not on the next:

\set x 1
\set continue loop true
\set weird command '\endwhile'
\while :continue loop
SELECT :x + 1 as x, (:x > 1) as include file \gset
\if :include file
\ir some other file.sqgl
:welrd command
\endif
\endwhile

Looping With Recursion

$ cat recursion test.sql
\echo :x
SELECT :x + 1 as x, (:x > :y) as exit now \gset
\if :exit now
\g
\endif
\ir recursion test.sql

$ psqgl test -f recursion test.sgl --set x=1 --set y=2000
1017
1018
1019

psgl:recursion test.sql:6: recursion test.sgl: Too many open files

® You can raise the file limit, but in my test I got a segfault at 5291

Future Directions:

Real expressions for \if, \elif, \set

\gdesc

Testing for variable definition with {?var}

Test-able server version numbers (good for install scripts)

Making the postgres regression tests more robust without switching to PgTAP

Questions?

